Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 905: 167027, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717779

RESUMEN

Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.


Asunto(s)
Microbiota , Ríos , Estaciones del Año , Filogenia , ARN Ribosómico 16S/genética
2.
Front Microbiol ; 14: 1098236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819062

RESUMEN

Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36497597

RESUMEN

To study the influence of open-pit coal mining on the surrounding soil environment and human health, this study selected the Hongshaquan coal mine in Xinjiang as the research area and took 31 soil samples from the dump and artificial forest of the mining area. The contents of seven heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in the soil were analyzed. The pollution index method, geoaccumulation index method (Igeo), potential ecological risk index method, health ecological risk assessment model and principal component analysis (PCA) were used to evaluate and analyze the heavy metal pollution, potential ecological risk and health ecological risk of the soil. The results showed that compared with the background value of soil in Xinjiang, except for Pb, other heavy metal elements were essentially pollution-free and belonged to the low ecological risk area. The health risk assessment model showed that Pb and As were the main pollution factors of noncarcinogenic risk, and that exposure to Ni, Pb and As had a lower carcinogenic risk. The PCA showed that Cu, Cr, Ni, Pb, As and Zn in the dump were from transportation and industrial activities, Cd was from natural resources, and Cr, Zn, Ni, Cd and Pb were from transportation in the artificial forest. Cu came from industrial sources and As from soil parent material. The dump was more seriously disturbed by human factors than by artificial forests. Our research provides a reference for heavy metal pollution and source analysis caused by mining.


Asunto(s)
Minas de Carbón , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Contaminantes del Suelo/análisis , Cadmio/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , China
4.
Artículo en Inglés | MEDLINE | ID: mdl-36612805

RESUMEN

Land subsidence from coal mining has shaped new artificial aquatic ecosystems, these subsidence lakes are known for their restricted ecological system, water pollution, and extreme habitat conditions. However, knowledge concerning the community structure of plankton in these types of water bodies is still limited. Therefore, both phytoplankton and zooplankton communities' abundance, distribution, and diversity, as well as relations of these communities to physicochemical water quality variables were analyzed, alongside the interaction between phytoplankton and zooplankton groups. The results indicate zooplankton abundance was 842.375 to 186,355.0 ind./L. Biomass ranged from 0.3408 to 10.0842 mg/L. Phytoplankton abundance varied between 0.541 × 106 cell/L and 52.340 × 106 cell/L while phytoplankton wet biomass ranged from 0.5123 to 5.6532 mg/L. Pearson correlation analysis revealed that both the zooplankton and phytoplankton total densities were significantly correlated with nutrients (TN, TP, PO43-) and CODcr; zooplankton abundance was significantly correlated with phytoplankton abundance. According to the biodiversity index of Shannon-Wiener, both phytoplankton and zooplankton revealed less biodiversity in the subsidence water region than in the Huihe river system and Xiangshun canal, with values ranging from 0.20 to 2.60 for phytoplankton and 1.18 to 2.45 for zooplankton; however, the phytoplankton community showed lower biodiversity index values compared to the zooplankton community. Overall, the knowledge gleaned from the study of plankton community structure and diversity represents a valuable approach for the evaluation of the ecological conditions within the subsidence lakes, which has significant repercussions for the management and protection of aquatic environments in mining areas.


Asunto(s)
Minas de Carbón , Fitoplancton , Animales , Zooplancton , Ecosistema , Lagos , Plancton , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...